

Welcome to gridengineapp’s documentation!

Contents:

	About GridEngineApp
	Qsub and Qstat

	Application Framework

	Future Functionality

	GridEngineApp Tutorial
	The Application

	The Job Class

	The Child Job Main

	Running

	Qsub Tutorial
	Main Success Sequence

	Submit a Restartable Job

	Task Arrays

	Application Requirements
	Problem to Solve

	Stakeholders

	Core Capabilities

	Scenario Summaries

	Feature List

	Testing Plan
	Running Tests

	Systems Under Test

	Ways to Partition Testing

	Library Reference

Indices and tables

	Index

	Module Index

	Search Page

About GridEngineApp

This library has two parts:

	A set of Python functions to use qsub and qacct from Grid Engine.

	An application framework for writing applications that run
under Grid Engine and are testable on local machines.

Qsub and Qstat

These functions are responsible for formatting command arguments
according to Grid Engine’s rules for where dashes and commas go.
They are also responsible for parsing XML output in order to produce
dictionaries of the resulting data. They don’t limit functionality,
and they don’t simplify it. You can do that in a layer on top of
these tools, if you want.

Application Framework

An application within this framework presents its work as a
graph of functions. The framework is responsible for executing
subgraphs of functions using

	Grid Engine,

	Multiple subprocesses, respecting a memory limit on the machine,

	A single process, or

	Within unit tests.

The ability to run individual functions within unit tests
enables a kind of testing called thread testing, which is a high-level
test, from invocation to result.

With this framework, there is no need to make a separate main()
for each UGE job. The level of abstraction is at a function level,
where each function declares its memory, time, and CPU requirements.
The framework will automatically create a main() with which to
invoke individual jobs, if one isn’t supplied.

Future Functionality

Because this framework is built around a graph of jobs,
the graph structure is available for building
tools to run an application within a larger framework
and tools to check the status of jobs.
While qstat tells you how each individual job is running,
the graph of jobs tells you what that implies about whether
other jobs have already run or are going to run.

GridEngineApp Tutorial

This follows the location_app example in the
examples directory.

The Application

We are going to build a graph of Jobs, where a Job is a class that
holds code to run in a UGE job on the cluster. For instance, our
code could use the locations hierarchy, in which case we would build
the graph as follows:

import networkx as nx
import db_queries

def location_graph(gbd_round_id, location_set_version_id):
 location_df = db_queries.get_location_metadata(
 gbd_round_id=gbd_round_id, location_set_version_id=location_set_version_id)
 G = nx.DiGraph()
 G.add_nodes_from([
 (int(row.location_id), row._asdict())
 for row in location_df.itertuples()])
 # GBD encodes the global node as having itself as a parent.
 G.add_edges_from([
 (int(row.parent_id), int(row.location_id))
 for row in location_df[location_df.location_id != 1].itertuples()])
 return G

The NetworkX Library [http://networkx.github.io/] is a convenient
way to build directed acyclic graphs. It has a
good NetworkX Tutorial [https://networkx.github.io/documentation/stable/tutorial.html].

The main code required to use this framework is the Application
class. It has the following parts:

class GridExample:
 """The class name will be used as the base name for cluster job names."""
 def __init__(self):
 """An init that takes no arguments, because it will be
 called for the children."""
 self.location_set_version_id = None
 self.gbd_round_id = None

 def add_arguments(parser):
 """The same argument parser is used for both the initial
 call to run all the jobs and each time a job is run.
 These arguments both decide the shape of the graph and,
 later, the exact job to run within that graph."""
 parser.add_argument("--location-set-version-id", type=int,
 default=429)
 parser.add_argument("--gbd-round-id", type=int, default=6)
 parser.add_argument("--job-idx", type=int, help="The job ID")

 def job_id_to_arguments(job_id):
 """Makes a list of arguments to add to a command line in
 order to run a specific job."""
 return ["--job-id", str(job_id)]

 def job_identifiers(self, args):
 """Given arguments, return the jobs specified.
 This could be used to subset the whole graph, for instance
 to run a slice through the locations from global to
 most-detailed locations."""
 if args.job_id:
 return [args.job_id]
 else:
 return self.job_graph().nodes

 def initialize(self, args):
 """Read the arguments in order to know what to do."""
 self.location_set_version_id = args.location_set_version_id
 self.gbd_round_id = args.gbd_round_id

 def job_graph(self):
 """Make the whole job graph and return it."""
 return location_graph(
 self.gbd_round_id, self.location_set_version_id)

 def job(self, location_id):
 """Make a job from its ID.
 We haven't said what this class is yet."""
 return LocationJob(location_id)

Most of that work is to define the job graph or parse
arguments to specify parts of the job graph. The work
we do is in a Job class.

The Job Class

A Job itself inherits from a base class, Job.
The most important parts of the Job are its
run method and outputs. The run method does the work,
and the framework uses the list of outputs to check whether
the job completed.
The class’s initialization is done by the Application class,
so we can pass in whatever helps initialize the Job:

class LocationJob(Job):
 def __init__(self, location_id, gbd_round_id):
 super().__init__()
 out_file = Path("/data/home") / f"{location_id}.hdf"
 self.outputs["paf"] = FileEntity(out_file)

 @property
 def resources(self):
 """These can be computed from arguments to init."""
 return dict(
 memory_gigabytes=1,
 threads=1,
 run_time_minutes=1,
)

 def run(self):
 pass # Make that output file.

The outputs are a dictionary of objects that check
whether a file is in a state where we consider this job
to have done its work. The FileEntity checks that the
file exists. The PandasEntity can check that particular
data sets exist in the file.

The list of outputs enables the framework to know which
jobs have definitely completed.
We can also define self.inputs, which enable the
framework to set up mock inputs, so that we can test
individual jobs in a larger graph, without first running
the whole graph.

The Child Job Main

Finally, at the bottom of the file, under the Application,
we put a snippet that is the main() for the jobs:

if __name__ == "__main__":
 app = GridExample()
 exit(entry(app))

This framework looks for this specifically in the same
file as the application class. If it doesn’t find one,
it will attempt to make its own version of a main().

Running

Debug One Job Locally

In order to start one job locally, you can run it
with, in this case:

$ python location_app.py --job-idx 1 --pdb

The --pdb will make the job drop into an interactive
debugger when it encounters an exception.

Check Outputs Match Inputs

One way to see that the graph is well-formed is to supply
both an input list and an output list to each job
and run the whole of it using an automatic mocking:

$ python location_app.py --mock

Because there is no --job-idx argument, it will try to
run the whole graph. Because there is no --grid-engine
argument, it will run it as functions within this process,
and the --mock argument tells it to skip the real
run() method and, instead, use the self.outputs
to generate fake files. The self.inputs check that the
correct fake files exist when a Job first starts.

Run on the Cluster

On the cluster, start the whole thing with the command:

$ python location_app.py --grid-engine --project proj_forecasting

It will launch jobs and return immediately. Those jobs
will all have the same name, something like
location_app23f824_37, where the first part is the application
name, and then there are six hexadecimal characters that
are (probably) unique for this job, and then an identifier
for the particular location running.

The framework looks at each Job’s run times in order to
determine which queue to use.

Smaller Run on One Node

If there is less work to do, it may be easier to run
this application interactively, using all the cores
of a node. In that case, login to a node, allocating,
maybe 16 GB of memory. Then run:

$ python location_app.py --memory-limit 16

Then it will run all jobs as subprocesses,
ensuring it doesn’t exceed that memory limit in GB.

Qsub Tutorial

Grid Engine is an abstraction of the Unix process. It makes
a Unix process on a remote machine look like a Unix process
on a local machine by giving the user access to its standard
in and standard out streams, its Job ID (equivalent to
process ID), and allowing the user to start, pause, and
kill these jobs.

This library gives a program a tested interface to using
Grid Engine commands. It reduces the probability of mistyping
while making every last feature available.

Main Success Sequence

Let’s look at a typical sequence of events. Suppose
we want to submit 300 jobs, for every cause of death.
Start by making a template that describes all
of the jobs:

from gridengineapp import QsubTemplate
template = QsubTemplate()
template.P = "proj_forecasting"
template.q = "all.q"
template.l["fthread"] = "30"
template.l["m_mem_free"] = "5G"
template.l["h_rt"] = "00:05:00"

Now we want to submit a bunch of jobs:

from gridengineapp import qsub
job_id = list()
for cause in range(300):
 job_id.append(qsub(template, ["/ihme/code/borlaug/run.sh", cause]))

That gives you a bunch of job IDs.
If the list of job IDs is small, you might find
their status by passing them into qstat:

from gridengineapp import qstat
jobs = qstat(job_list=job_id)
for job in jobs:
 if "error" in job.status:
 print(f"Job {job.name} in error")

The job status is a set of strings, where the strings
can be “idle”, “held”, “migrating”, “queued”,
“running”, “suspended”, “transfering”, “deleted”,
“waiting”, “exiting”, “written”, “error”,
or “waiting4osjid”.

Submit a Restartable Job

There are a few reasons a job might want to ask the scheduler
to rerun it on a different node. For instance, the node
where it starts could be missing mount points so that files
aren’t found. The node could have an out-of-date version
of an important piece of software. In these cases, you can
start your code with a check of the node and, if it looks bad,
restart the job:

from gridengineapp import restart_count

This command increments the restart count, stored in file
in the logging directory.
restarted = restart_count()
if not Path("/ihme/forecasting").exists():
 if restarted < 3:
 LOGGER.error("Node missing data mount point. Restarting")
 exit(99)
 else:
 LOGGER.error("Node missing data mount point. Restart limit reached.")
 exit(1)

Task Arrays

The basic unit of work is a Job. Task arrays are copies of a job.
In Grid Engine, a task array is specified using:

qsub -P project -t 1-10 script.sh

Here, there are 10 tasks with task ids from 1 to 10. This
could also be from 1 to 1 and would still be a task array.
That’s even a nice way to test a task array.

In a Grid Engine job, task IDs are specified by an environment variable,
SGE_TASK_ID, which will be the integer number, or, if this
isn’t a task array, the variable will be undefined or the string
value “undefined.”

How do we handle this for our Grid Engine Application?
Make a Job that clones to become a task array:

class MyJob:
 def __init__(self, task_id=None):
 super().__init__()
 self.task_id = task_id
 if self.task_id:
 self.outputs[f"out{task_id}"] = FileEntity("out.hdf")

 def clone_task(self, task_id):
 return MyJob(task_id)

 ... and the usual methods follow ...

When the task runs, it will be cloned with the task id. This way, we can
instantiate multiple tasks at the same time. This task id is
guaranteed to be greater than zero.

Application Requirements

Problem to Solve

Forecasting builds a lot of applications that run on the cluster.
The main challenge for our cluster is that cluster nodes
often fail to run a job that would otherwise run.
When we write code, we get distracted by this
circumstance. This package focuses on making code testable
first, while also dealing with node misconfiguration as
a secondary problem. Our code has more bugs than the nodes do,
so making work testable is the primary problem to solve.

These applications have to be

	modifiable

	reliable

	usable

in that order. They don’t need a lot of crazy capability.
They don’t need much security.

There are a ton of frameworks to run applications.
We’ve had trouble finding ones that let us
make code that runs under Grid Engine and is can
still be run in a test harness.

Stakeholders

	Stein Emil Vollset - P.I., who wants things timely.

	Amanda Smith - Project officer, who wants things usable.

	Serkan - who wants us not to abuse the cluster.

Core Capabilities

	Run Python code with memory, CPU, and time requirements
on the Fair cluster.

	Run the same Python code under pytest both on the cluster
and on desktops.

Scenario Summaries

	S1. Define a Python function for every country and
run it for all countries on the cluster.

	S2. Modeler runs a single country under a debugger.

	S3. Modeler changes the code, deletes a subset of the
files, and tells the program to redo all steps that
depend on the deleted files.

	S4. Define a hierarchical set of jobs, with an aggregation
step at the end. Run a mock version of this, in a
single Unix process, in order to verify that each
step creates files needed by the next step, so they all
connect correctly.

	S5. Rerun one job in the middle of a graph of jobs
in order to run it under a debugger.

	S6. If a job is slow, and the modeler cannot ssh into
the node, then the modeler asks Grid Engine to delete
that job. The modeler then asks the application to
resubmit that job and all jobs that depend on it.

	S7. If a job runs into an error that comes from
node misconfiguration, such as inability to reach
a file on a shared filesystem, then it can raise
an exception that results in rerunning the job.

Feature List

	F1. Run an application under Grid Engine.

	F2. Run an application as a single local process.

	F3. Run an application as multiple Unix processes on a local machine.

	F4. Continue a application, which means looking at which outputs it hasn’t
made and starting the jobs that make those outputs.

	F5. Rerun a single job within an application, if the application detects
a problem with its local node, only for Grid Engine.

	F6. Wait synchronously for all jobs within an application to complete.

	F7. Configure logging to go to the known logging directory.

	F8. Run a single job within an application as a local process
under a debugger.

	F9. Run all jobs in an application that depend on a particular job.

	F10. Test that an application is well-formed before trying to run it.

	F11. During asynchronous execution, tell the client the name of
the job and the job id of the last job to execute.

	F12. Collect metrics on a job as a function of the parameters.

	F13. Check common node misconfiguration problems, such as missing
filesystem mounts.

	F14. Launch jobs without requiring the client to write a
Python main function. Write that file for them, so that they can
call a job using the class of the application.

	F15. Use task arrays to run jobs that have multiplicity.

	F16. Allow the developer to configure Grid Engine job templates
and logging.

Testing Plan

Running Tests

Install the cascade_config repository from the local versioning system
before running tests, so that it knows local directories:

cd tests
pytest --fair

This will run tests using up to 4GB of memory and including job
submission to the cluster queues. When testing on a laptop or
on Github, exclude the --fair flag.

Systems Under Test

This software is a single Python package. It gets installed into the
same Python virtual environment, or Conda environment, that the client
application uses. That’s not complicated, but there can be many
concurrent Unix processes that run within this same environment,
on the same or different machines.

	For a Grid Engine job, there is a parent invocation of the
gridengineapp.entry() method, done on a Grid Engine submission host.
This asks Grid Engine to launch multiple jobs, each of which
is a Python main that calls gridengineapp.entry() on remote hosts.

	For a multiprocess job, there is a parent invocation of
gridengineapp.entry() on a local host. This then uses subprocesses
to run multiple Unix processes, each of which calls gridengineapp.entry()
to run a single Job.

	For a whithin-process job, the parent invocation then runs
each job as a function, in order, on the local host. The arguments
to this function need to be similar to what a Grid Engine
run would see.

We can think of this as six kinds of systems under test, for the
parent invocation and the child job runs of Grid Engine, multiprocess,
and within-process.

Ways to Partition Testing

By command-line argument
We can think of combinations of command-line arguments as a way to partition
testing at a high level. These arguments are defined in the entry()
function. There are sets of arguments:

	Grid engine arguments

	Multiprocessing arguments

	Graph sub-selection arguments

	Arguments about how to run individual jobs (mock, pdb, logging).

By Scenario
We could make several applications and run them through the steps
described in the requirements scenarios.
So make a new application and run it through different things a user
would do.

Library Reference

	
gridengineapp.qstat(effective_user=None, job_list=None)

	Get status of all jobs in the job_list belonging to the given
user:

import getpass
user = getpass.getuser()
job_info = qstat(user, "dm_38044_*")

	Parameters

	
	effective_user (str) – The user ID.

	job_list (str) – Can be model version IDs, or a job name,
or a job name with a wildcard. See man sge_types.

	Returns

	Information about the jobs.

	Return type

	List[FlyWeightJob]

	
gridengineapp.qstat_short(effective_user=None)

	Calling qstat without -j gets a much smaller result that just has
job information.

	Parameters

	effective_user (str) – Request qstat for this user’s jobs.
Default is to use the current user.

	Returns

	A list of jobs with less information than
what qstat -j shows.

	Return type

	List[MiteWeightJob]

	
gridengineapp.qsub(template, command)

	Runs a qsub command with a template. By using the template, as described
below, this function makes it easier to create a default set of
qsub settings and overwrite them, job by job, without doing
string manipulation.

We can either try to put a super-thoughtful interface on qsub, or we
let the user manage its arguments. This focuses on making it a little
easier to manage arguments with the template.

	Parameters

	
	template – Suitable for template_to_args.

	command (List[str]) – A list of strings to pass to qsub.

	Returns

	The model version ID. It’s a str because it isn’t an int.
Can you add 37 to it? No. Is it ordered? That’s not guaranteed.
Does it sometimes have a “.1” at the end? Yes.
That makes it a string.

	Return type

	str

The template argument is a dictionary where each entry corresponds
to an argument to qsub. Here are the rules:

	If the argument is a flag with no argument, set
template[flag] = None.

	If the argument is a flag with a true or false, set
template[flag] = True, or False.

	If the argument is a comma-separated list, set the
value to a list,
template["dc"] = ["LD_LIBRARY_PATH", "CC"].

	If the argument is a set of key-value pairs, set the value
to a dictionary,
template["l"] = dict(m_mem_free="16G", fthreads=16).

	
gridengineapp.qsub_template()

	Basic template for qsub. This means that any flags that can
have multiple copies are already included in the data structure.
So you can do template["l"]["intel"] without having
to check that “l” exists.

template = qsub_template()
template["q"] = "all.q"
template["P"] = "proj_forecasting"
template["l"]["h_rt"] = "12:00:00"
args = template_to_args()
assert "-q all.q" in " ".join(args)

	
class gridengineapp.FlyWeightJob(job_jsonlike)

	Sits on top of the parsed XML to answer job questions.
The for_each_member creates a reasonable Pythonic data structure. What’s
missing at that point is knowing what tag correspondes to what human
information. We layer that here and will add what we need when we
need it.

	
job_dict = None

	Dictionary containing all information from qstat.

	
property status

	Set of strings like: idle, running, as a set.
This can be in more than one state at a time, such as
{"queued", "waiting"}, which we know as qw.

	
property tasks

	FlyWeightTasks for tasks in the job. Can be none.

	
property name

	As given by the -N qsub option.

	
property job_id

	The job ID, as in 2349272.

	
property task_cnt

	How many tasks are associated with this job.
Jobs contain tasks, and it’s the tasks that run, have statuses,
and have CPU times.

	
class gridengineapp.FlyWeightTask(task_jsonlike)

	Responsible for presenting task-specific information from qstat.
Every job contains at least one task. Task arrays have one or more
tasks.

	
task_dict = None

	Dictionary containing all information from qstat.

	
property number

	Tasks within a job are numbered from 1.

	
property status

	Status is a set of strings.

	
property restarted

	Bool: Whether this task did restart.

	
property hostname

	Hostname where this task will run, is running, or has run.

	
class gridengineapp.MiteWeightJob(job_jsonlike)

	Like the FlyWeightJob, this represents a Job. This one
includes everything in the simplified version of qstat.

	
job_dict = None

	Dictionary with all information from qstat.

	
property status

	Set of strings like: idle, running, as a set.
This can be in more than one state at a time, such as
{"queued", "waiting"}, which we know as qw.

	
property tasks

	FlyWeightTasks for tasks in the job. Can be none.

	
property name

	As given by the -N qsub option.

	
property job_id

	The job ID, as in 2349272.

	
property task_cnt

	How many tasks are associated with this job.
Jobs contain tasks, and it’s the tasks that run, have statuses,
and have CPU times.

	
class gridengineapp.GridParser(prog=None, usage=None, description=None, epilog=None, parents=[], formatter_class=<class 'argparse.HelpFormatter'>, prefix_chars='-', fromfile_prefix_chars=None, argument_default=None, conflict_handler='error', add_help=True, allow_abbrev=True)

	
	
error(message)

	Override the base class because it calls sys.exit.
This library uses the parser as an internal tool,
not just for user interaction. For instance, it’s used
in testing, where an exception is more appropriate.

If the status is 0, that means nothing is wrong, and
the user requested --help, so, yes, exit.

Otherwise, print a message to standard error
and raise an exception.

	
exception gridengineapp.ArgumentError

	An error for command-line arguments.

	
class gridengineapp.FileEntity(file_path)

	Responsible for making a path that is writable for a file.

	Parameters

	relative_path (Path|str) – Path to the file, relative to a root.

	
property path

	Return a full file path to the file, given the current context.

	
validate()

	Validate by checking file exists.

	Returns

	None, on success, or a string on error.

	
mock()

	Touch the file into existence.

	
remove()

	Delete, unlink, remove the file. No error if it doesn’t exist.

	
class gridengineapp.PandasFile(file_path, required_frames=None)

	Responsible for validating a Pandas file.

	Parameters

	
	file_path (Path|str) – Path to the file.

	required_frames (Dict[str,set]) – Map from the name of the dataset,
as specified by the Pandas key argument, to a list of columns
that should be in that dataset.

	
validate()

	
	Returns

	None, on success, or a string on error.

	
mock()

	Touch the file into existence.

	
class gridengineapp.ShelfFile(file_path, required_keys=None)

	Responsible for validating a Python shelf file.

	Parameters

	
	file_path (Path|str) – Path to the file.

	required_keys (Set[str]) – String names of variables to find in
the file.

	
validate()

	Validates that there are variables named after the required keys.
:returns: None, on success, or a string on error.

	
mock()

	Touch the file into existence.

	
remove()

	Delete, unlink, remove the file. No error if it doesn’t exist.

	
gridengineapp.check_complete(identify_job, check_done, timeout=3600)

	Submit a job and check that it ran.
If the job never shows up in the queue, and
it didn’t run, that’s a failure. If it shows up in
the queue and goes over the timeout, we abandon it,
because these are tests.

	Parameters

	
	identify_job (function) – True if it’s this job.

	check_done (function) – True if job is done.

	timeout (float) – How many seconds to wait until
calling the job lost.

	Returns

	None

	
gridengineapp.entry(app, arg_list=None)

	This starts the application. Use it with:

if __name__ == "__main__":
 application = MyApplication()
 entry(application)

	Parameters

	
	app (application.Application) – The main application to run.

	arg_list (Namespace|SimpleNamespace) – Arguments to the command line.
This is usually None and is used for testing.
Pass this around instead of using sys.argv because
pytest makes it hard to set sys.argv.

	
gridengineapp.execution_ordered(graph)

	This iterator orders the nodes
such that they go depth-first. This is chosen so that the data
has the most locality during computation. It’s not strictly
depth-first, but depth-first, given that all predecessors must
be complete before a node executes.

	
exception gridengineapp.NodeMisconfigurationError

	Failures whose faults may be due to node misconfiguration.

 Python Module Index

 g

 		 	

 		
 g	

 	
 	
 gridengineapp	

Index

 A
 | C
 | E
 | F
 | G
 | H
 | J
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | V

A

 	
 	ArgumentError

C

 	
 	check_complete() (in module gridengineapp)

E

 	
 	entry() (in module gridengineapp)

 	
 	error() (gridengineapp.GridParser method)

 	execution_ordered() (in module gridengineapp)

F

 	
 	FileEntity (class in gridengineapp)

 	
 	FlyWeightJob (class in gridengineapp)

 	FlyWeightTask (class in gridengineapp)

G

 	
 	gridengineapp (module)

 	
 	GridParser (class in gridengineapp)

H

 	
 	hostname() (gridengineapp.FlyWeightTask property)

J

 	
 	job_dict (gridengineapp.FlyWeightJob attribute)

 	(gridengineapp.MiteWeightJob attribute)

 	
 	job_id() (gridengineapp.FlyWeightJob property)

 	(gridengineapp.MiteWeightJob property)

M

 	
 	MiteWeightJob (class in gridengineapp)

 	mock() (gridengineapp.FileEntity method)

 	(gridengineapp.PandasFile method)

 	(gridengineapp.ShelfFile method)

N

 	
 	name() (gridengineapp.FlyWeightJob property)

 	(gridengineapp.MiteWeightJob property)

 	
 	NodeMisconfigurationError

 	number() (gridengineapp.FlyWeightTask property)

P

 	
 	PandasFile (class in gridengineapp)

 	
 	path() (gridengineapp.FileEntity property)

Q

 	
 	qstat() (in module gridengineapp)

 	qstat_short() (in module gridengineapp)

 	
 	qsub() (in module gridengineapp)

 	qsub_template() (in module gridengineapp)

R

 	
 	remove() (gridengineapp.FileEntity method)

 	(gridengineapp.ShelfFile method)

 	
 	restarted() (gridengineapp.FlyWeightTask property)

S

 	
 	ShelfFile (class in gridengineapp)

 	status() (gridengineapp.FlyWeightJob property)

 	(gridengineapp.FlyWeightTask property)

 	(gridengineapp.MiteWeightJob property)

T

 	
 	task_cnt() (gridengineapp.FlyWeightJob property)

 	(gridengineapp.MiteWeightJob property)

 	
 	task_dict (gridengineapp.FlyWeightTask attribute)

 	tasks() (gridengineapp.FlyWeightJob property)

 	(gridengineapp.MiteWeightJob property)

V

 	
 	validate() (gridengineapp.FileEntity method)

 	(gridengineapp.PandasFile method)

 	(gridengineapp.ShelfFile method)

 nav.xhtml

 Table of Contents

 		
 Welcome to gridengineapp’s documentation!

 		
 About GridEngineApp

 		
 Qsub and Qstat

 		
 Application Framework

 		
 Future Functionality

 		
 GridEngineApp Tutorial

 		
 The Application

 		
 The Job Class

 		
 The Child Job Main

 		
 Running

 		
 Debug One Job Locally

 		
 Check Outputs Match Inputs

 		
 Run on the Cluster

 		
 Smaller Run on One Node

 		
 Qsub Tutorial

 		
 Main Success Sequence

 		
 Submit a Restartable Job

 		
 Task Arrays

 		
 Application Requirements

 		
 Problem to Solve

 		
 Stakeholders

 		
 Core Capabilities

 		
 Scenario Summaries

 		
 Feature List

 		
 Testing Plan

 		
 Running Tests

 		
 Systems Under Test

 		
 Ways to Partition Testing

 		
 Library Reference

_static/file.png

_static/minus.png

_static/plus.png

